
f – Linear Algebra f01rdc

nag complex apply q (f01rdc)

1. Purpose

nag complex apply q (f01rdc) performs one of the transformations

B := QB or B := QHB,

where B is an m by ncolb complex matrix and Q is an m by m unitary matrix, given as the product
of Householder transformation matrices.

This function is intended for use following nag complex qr (f01rcc).

2. Specification

#include <nag.h>
#include <nagf01.h>

void nag_complex_apply_q(MatrixTranspose trans, Nag_WhereElements wheret,
Integer m, Integer n, Complex a[], Integer tda, Complex theta[],
Integer ncolb, Complex b[], Integer tdb, NagError *fail)

3. Description

The unitary matrix Q is assumed to be given by

Q = (QnQn−1 . . . Q1)
H ,

Qk being given in the form

Qk =
(

I 0
0 Tk

)
,

where

Tk = I − γkukuH
k

uk =
(

ζk

zk

)
,

γk is a scalar for which Re γk = 1.0, ζk is a real scalar and zk is an (m − k) element vector.

zk must be supplied in the (k − 1)th column of a in elements a[k][k − 1], . . . ,a[m− 1][k − 1] and θk,
given by

θk = (ζk, Imγk),

must be supplied either in a[k− 1][k− 1] or in theta[k − 1], depending upon the parameter wheret.

To obtain Q explicitly B may be set to I and premultiplied by Q. This is more efficient than
obtaining QH . Alternatively, nag complex form q (f01rec) may be used to obtain Q overwritten on
A.

4. Parameters

trans
Input: the operation to be performed as follows:

trans = NoTranspose, perform the operation B := QB.
trans = ConjugateTranspose, perform the operation B := QHB.
Constraint: trans must be one of NoTranspose or ConjugateTranspose.

wheret
Input: the elements of θ are to be found as follows:

wheret = Nag ElementsIn The elements of θ are in A.
wheret = Nag ElementsSeparate The elements of θ are separate from A, in theta.
Constraint: wheret must be one of Nag ElementsIn or Nag ElementsSeparate.

[NP3275/5/pdf] 3.f01rdc.1

nag complex apply q NAG C Library Manual

m
Input: m, the number of rows of A.
Constraint: m ≥ n.

n
Input: n, the number of columns of A.
When n = 0 then an immediate return is effected.
Constraint: n ≥ 0.

a[m][tda]
Input: the leading m by n strictly lower triangular part of the array a must contain details
of the matrix Q. In addition, when wheret = Nag ElementsIn, then the diagonal elements of
a must contain the elements of θ as described under the parameter theta below.
When wheret = Nag ElementsSeparate, then the diagonal elements of the array a are
referenced, since they are used temporarily to store the ζk, but they contain their original
values on return.

tda
Input: the second dimension of the array a as declared in the function from which
nag complex apply q is called.
Constraint: tda ≥ n.

theta[n]
Input: with wheret = Nag ElementsSeparate, the array theta must contain the elements of
θ. If theta[k − 1] = 0.0 then Tk is assumed to be I; if theta[k − 1] = α, with Re α < 0.0, then
Tk is assumed to be of the form

Tk =
(

α 0
0 I

)
;

otherwise theta[k − 1] is assumed to contain θk given by θk = (ζk, Imγk).
When wheret = Nag ElementsIn, the array theta is not referenced, and may be set to the
null pointer, i.e., (Complex ∗)0.

ncolb
Input: ncolb, the number of columns of B.
When ncolb = 0 then an immediate return is effected.
Constraint: ncolb ≥ 0.

b[m][tdb]
Input: the leading m by ncolb part of the array b must contain the matrix to be transformed.
Output: b is overwritten by the transformed matrix.

tdb
Input: the second dimension of the array b as declared in the function from which
nag complex apply q is called.
Constraint: tdb ≥ ncolb.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE BAD PARAM
On entry, parameter trans had an illegal value.
On entry, parameter wheret had an illegal value.

NE 2 INT ARG LT
On entry, m = 〈value〉 while n = 〈value〉. These parameters must satisfy m ≥ n.
On entry, tda = 〈value〉 while n = 〈value〉. These parameters must satisfy tda ≥ n.
On entry, tdb = 〈value〉while ncolb = 〈value〉. These parameters must satisfy tdb ≥ ncolb.

NE INT ARG LT
On entry, n must not be less than 0: n = 〈value〉.
On entry, ncolb must not be less than 0: ncolb = 〈value〉.

3.f01rdc.2 [NP3275/5/pdf]

f – Linear Algebra f01rdc

NE ALLOC FAIL
Memory allocation failed.

6. Further Comments

The approximate number of real floating-point operations is given by 8n(2m− n)ncolb.

6.1. Accuracy

Letting C denote the computed matrix QHB, C satisfies the relation

QC = B + E

where ‖E‖ ≤ cε‖B‖, ε being the machine precision, c is a modest function of m and ‖.‖ denotes
the spectral (two) norm. An equivalent result holds for the computed matrix QB. See also Section
6.1 of nag complex qr (f01rcc).

6.2. References

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Clarendon Press, Oxford.

7. See Also

nag complex form q (f01rec)
nag complex qr (f01rcc)

8. Example

To obtain the matrix QHB for the matrix B given by

B =

−0.55 + 1.05i 0.45 + 1.05i
0.49 + 0.93i 1.09 + 0.13i
0.56 − 0.16i 0.64 + 0.16i
0.39 + 0.23i −0.39 − 0.23i
1.13 + 0.83i −1.13 + 0.77i

following the QR factorization of the 5 by 3 matrix A given by

A =

0.5i −0.5 + 1.5i −1.0 + 1.0i
0.4 + 0.3i 0.9 + 1.3i 0.2 + 1.4i
0.4 −0.4 + 0.4i 1.8
0.3 − 0.4i 0.1 + 0.7i 0.0

−0.3i 0.3 + 0.3i 2.4i

 .

8.1. Program Text

/* nag_complex_apply_q(f01rdc) Example Program
*
* Copyright 1990 Numerical Algorithms Group.
*
* Mark 1, 1990.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf01.h>

#define MMAX 20
#define NMAX 10
#define NCBMAX 5
#define TDA NMAX
#define TDB NCBMAX
#define COMPLEX(A) A.re, A.im

[NP3275/5/pdf] 3.f01rdc.3

nag complex apply q NAG C Library Manual

main()
{

Integer i, j, m, n, ncolb;
Complex a[MMAX][TDA], b[MMAX][TDB], theta[NMAX];
static NagError fail;

Vprintf("f01rdc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
Vscanf("%ld%ld", &m, &n);
if (m>MMAX || n>NMAX)

{
Vfprintf(stderr,"\n m or n is out of range.\n");
Vfprintf(stderr,"m = %ld n = %ld", m, n);
exit(EXIT_FAILURE);

}
for (i=0; i<m; ++i)

for (j=0; j<n; ++j)
Vscanf(" (%lf , %lf) ", COMPLEX(&a[i][j]));

Vscanf("%ld", &ncolb);
if (ncolb>NCBMAX)

{
Vprintf("\n ncolb is out of range.\n ncolb = %ld\n", ncolb);
exit(EXIT_FAILURE);

}
for (i=0; i<m; ++i)

for (j=0; j<ncolb; ++j)
Vscanf(" (%lf , %lf) ", COMPLEX(&b[i][j]));

/* Find the QR factorization of A. */
fail.print = TRUE;
f01rcc(m, n, (Complex *)a, (Integer)TDA, theta, &fail);

/* Form conjg(Q’)*B. */

f01rdc(ConjugateTranspose, Nag_ElementsSeparate, m, n, (Complex *)a, (Integer)
theta, ncolb, (Complex *)b, (Integer)TDB, &fail);

if (fail.code != NE_NOERROR)
exit(EXIT_FAILURE);

Vprintf("\nMatrix conjg(Q’)*B\n");
for (i=0; i<m; ++i)

{
for (j=0; j<ncolb; ++j)
Vprintf(" (%7.4f, %8.4f)%s", COMPLEX(b[i][j]),

(j%2==1 || j==n-1) ? "\n" : " ");
}

exit (EXIT_SUCCESS);
}

8.2. Program Data

f01rdc Example Program Data

5 3

(0.00, 0.50) (-0.50, 1.50) (-1.00, 1.00)
(0.40, 0.30) (0.90, 1.30) (0.20, 1.40)
(0.40, 0.00) (-0.40, 0.40) (1.80, 0.00)
(0.30, -0.40) (0.10, 0.70) (0.00, 0.00)
(0.00, -0.30) (0.30, 0.30) (0.00, 2.40)

2

(-0.55, 1.05) (0.45, 1.05)
(0.49, 0.93) (1.09, 0.13)
(0.56, -0.16) (0.64, 0.16)
(0.39, 0.23) (-0.39, -0.23)
(1.13, 0.83) (-1.13, 0.77)

3.f01rdc.4 [NP3275/5/pdf]

f – Linear Algebra f01rdc

8.3. Program Results

f01rdc Example Program Results

Matrix conjg(Q’)*B
(1.0000, 1.0000) (1.0000, -1.0000)
(-1.0000, 0.0000) (-1.0000, 0.0000)
(-1.0000, 1.0000) (-1.0000, -1.0000)
(-0.0600, -0.0200) (-0.0400, 0.1200)
(0.0400, 0.1200) (-0.0600, 0.0200)

[NP3275/5/pdf] 3.f01rdc.5

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

